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Abstract
We show how through a multiscale reduction technique, performing the analysis
at orders beyond the nonlinear Schrödinger equation, one can effectively
prove if some nonlinear partial difference equation is not integrable. The
example is carried out on a symmetric discretization of the KdV equation and
is compared to a similar reduction performed on the integrable lattice potential
KdV equation.

PACS numbers: 02.30.Jr, 02.30.Ik

1. Introduction

Since the work of Zakharov and Kuznetsov [21], it has become clear how to guess by a
perturbative multiscale analysis if a given nonlinear partial differential equation (PDE) is
integrable or not. A guiding principle in this approach is that, if the multiscale analysis
is applied in the proper way, from an integrable system one must get another integrable
system. So if, starting from an integrable PDE, we find a previously unknown system, this
last will be certainly integrable. Or, if we perform a multiscale analysis of a model whose
integrability property is not a priori known and at a certain order during the expansion we
find a nonintegrable system, we can conclude that the starting model is not integrable. These
considerations opened the way to classify all the first nontrivilal reduced systems one could
obtain in a multiscale analysis and to study the related implications concerning the integrability
of the starting model [1–6]. In this way, these first nontrivial reduced systems were elevated
to the status of models of a somehow universal nature. One of them of particular ubiquitous
character is the well-known nonlinear Schrödinger equation (NLS), which is an evolution
integrable by the inverse scattering transform. The first attempt to go beyond the NLS order
has been presented by Santini, Degasperis and Manakov in [8]. The authors, only demanding
that the series representing the perturbative solution of our problem would remain at any
order a uniformly valid approximation to the real solution, succeeded in removing from the
expansion all the diverging terms, the so-called secularities. With this at hand Degasperis and
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Procesi in [9, 10, 18] finally developed a secularity-free integrability test for a real dispersive
nonlinear PDE. In more recent times in [11–13], the theory developed to test the PDE has
been applied to the case of real dispersive partial difference equations (P�E). The basic
ingredients of this approach are as follows:

• the linear part of the P�E has the plane wave solution ei[κn−ω(κ)m], characterized by the
dispersion relation ω = ω(κ). Function ω(κ) is an analytic function of κ around κ = 0
so that it admits the Taylor series representation

ω(κ) =
+∞∑
j=0

ωj(0)κj , ωj (κ)
.= 1

j !

dj

dκj
ω(κ); (1)

• solution un,m to a given P�E has a C(∞) dependence on a set of slow-time variables
mj

.= Mjε
jm, j � 1 and on a slow-space variable n1

.= N1εn, where ε > 0 is the
perturbative parameter and Mj, j � 1 and N1 are real constants possibly such that
n1,mj , j � 1 turn out to be integers. This C(∞) dependence allows us to express any n or
m shift in the P�E as differential operators involving the derivatives with respect to the
slow variables;

• the real solution u(n,m, n1, {mj }j�1, ε) was chosen so as to be represented by the
perturbative series

u(n,m, n1, {mj }j�1, ε) =
+∞∑
γ=1

γ∑
α=−γ

εγ u(α)
γ (n1, {mj }j�1)E

α
n,m,

En,m
.= ei[κn−ω(κ)m], u(−α)

γ = ū(α)
γ ;

(2)

for more details see [20]. In [11], the multiscale analysis of the well-known integrable lattice
potential KdV equation (lpKdV)

μ(un+1,m+1 − un,m) + ζ(un+1,m − un,m+1) = (un+1,m − un,m+1)(un+1,m+1 − un,m), (3)

was performed until order ε3 at which one finds an integrable NLS equation, while in [12] it
was shown that the straightforward discretization of the KdV equation

un,m+1 − un,m−1 = α

4
(un+3,m − 3un+1,m + 3un−1,m − un−3,m) − β

2

(
u2

n+1,m − u2
n−1,m

)
, (4)

gives rise to an integrable NLS equation, too. In this paper, we will carry out the multiscale
analysis of equations (3) and (4) up to order ε5 thus showing that at this order the lpKdV
equation passes the integrability test while equation (4) does not.

This paper is organized as follows. In section 2, we will recall the main results on the
integrability test based on multiscale analysis contained in the works of Santini, Degasperis
and Manakov [8] and in those by Degasperis and Procesi [9, 10, 18]. In particular, we will
recall the notion of asymptotic integrability and all the asymptotic integrability conditions
which have to be satisfied to pass the test at a certain order. Here we will present for the first
time the so-called A3 integrability conditions. Then in sections 3 and 4, after we recall the
results contained in [11, 12] about the reduction of equations (3) and ( 4) until the NLS order,
we will examine the higher orders in the reduction process, thus giving an analytic evidence
of the nonintegrability of equation (4).

2. The orders beyond the NLS, equations and the integrability conditions

Let us emphasize the fundamental role covered by the higher orders in setting up an integrability
test for nonlinear differential equations. The importance of the following considerations is
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in the fact that everything we will say here remains the same even if we consider nonlinear
partial difference or differential-difference systems. The first attempt to go beyond the NLS
order has been presented in [8] and the authors, starting from S-integrable models, through a
combination of an asymptotic functional analysis and spectral methods, succeeded in removing
all the secular terms from the reduced equations they found order by order. Their findings
could be summarized as follows:

• the number of slow-time variables required for amplitudes u(α)
n coincides with the number

of nonvanishing coefficients ωn(κ) defined in equation (1);
• amplitude u

(1)
1 evolves at the slow-times tn, n � 3 according to the nth equation of the

NLS hierarchy;
• amplitudes u(1)

m ,m � 2 evolve at the slow-times tn, n � 2 according to certain linear,
nonhomogeneous equations supplemented by some asymptotic conditions on functions
u(1)

p , p � 2 themselves.

Thus, one can conclude that the cancellation at each stage of the perturbation process
of all the secular terms from the reduced equations is a sufficient request to uniquely fix
the evolution equations followed by every u(1)

n , n � 1 at each slow-time. The result in the
second point should be expected as a hierarchy of integrable equations always represents a
set of compatible evolutions for a unique function u at different times, or the equations in this
hierarchy are generalized symmetries of each other; for more details see [7, 19].

Although this procedure provides the most general necessary and sufficient conditions
to get secularity-free reduced equations, it is not necessary to maintain such a functional
approach to develop an integrability test. A recursive technique proves to be more suitable.
As illustrated in [9, 10, 18] the authors, through a detailed multiscale reduction of the spectral
problem associated with an S-integrable equation or of the linearizing process associated with
a C-integrable system, showed the following.

Theorem 1. If a nonlinear PDE is (C or S) integrable, then under a multiscale expansion,
functions u(1)

m ,m � 1 satisfy the equations

∂tnu
(1)
1 = Kn

[
u

(1)
1

]
, (5a)

Mnu
(1)
j = fn(j), Mn

.= ∂tn − K ′
n

[
u

(1)
1

]
, ∀j, n � 2, (5b)

where Kn

[
u

(1)
1

]
is the nth flow in the nonlinear Schrödinger hierarchy and fn(j) is a

inhomogeneous nonlinear forcing term . All the other u(κ)
m , κ � 2 are expressed in terms

of differential monomials of u(1)
ρ , ρ � m.

In other words, integrability is a sufficient condition for harmonics u(1)
n , n � 1 to satisfy

equations (5), or equations (5) are a necessary condition for integrability. In equations (5b),
K ′

n[u]v is the Frechet derivative of nonlinear term Kn[u] along direction v defined by

K ′
n[u]v

.= d

ds
Kn[u + sv]|s=0,

i.e., the linearization near u of Kn[u] along direction v. If Kn[u] depends explicitly on
x, t, u, ux, uxx . . . , ū, ūx, ūxx, . . . , the explicit expression of K ′

n[u]v is

K ′
n[u]v = ∂Kn

∂u
v +

∂Kn

∂ux

vx +
∂Kn

∂uxx

vxx + · · · +
∂Kn

∂ū
v̄ +

∂Kn

∂ūx

v̄x +
∂Kn

∂ūxx

v̄xx + · · · .
For future use, we note that operator K ′

n[u] is a linear operator when it acts on a linear
combination of functions with real coefficients. Equations (5a) represent a hierarchy of
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compatible evolutions for the same function u
(1)
1 at different slow-times. Those evolutions are

characterized by the commutativity condition

MrKs − MsKr = 0. (6)

In contrast, as we will see, the compatibility of equations (5b) is not always guaranteed
but is subject to a sort of commutativity conditions among their rhs terms fn(j)’s. These
last commutativity conditions will be the cornerstone of our integrability test. We have the
following.

Theorem 2. Operators Mm defined in equation (5b) commute among themselves. Once we
fix index j � 2 in the set of equations (5b), theorem 2 implies the following compatibility
conditions:

Mkfn(j) = Mnfk(j), ∀ k, n � 2, (7)

where fn(j) and fk(j) are functions of the fundamental harmonic u(1)
m with 1 � m � j − 1.

The time derivatives ∂tk , ∂tn of u(1)
m appearing inMk andMn respectively, have to be eliminated

using the evolution equations (5a), (5b) up to index j − 1.

Let us continue illustrating the results of Degasperis et al. As relations (5) imply an
infinite number of asymptotic symmetries for the PDE under investigation, Degasperis et al
[10] stated the following.

Conjecture 1. If a PDE admits a multiscale expansion with functions u(1)
m ,m � 1 satisfying

equations (5) ∀j, n � 2, then the equation is (C or S) integrable.

In other words, the conjecture affirms that the relations (5) are a sufficient condition for
integrability or that integrability is a necessary condition to have a multiscale expansion where
equations (5) are satisfied. Let us consider the following definitions:

Definition 1. A differential monomial ρ
[
u

(1)
j

]
, j � 1, in the functions u

(1)
j , their complex

conjugates and their ξ -derivatives are of ‘gauge’ 1 if the following transformation property,

ρ
[
ũ

(1)
j

] = eiθρ
[
u

(1)
j

]
, ũ

(1)
j

.= eiθu
(1)
j ,

is valid;

Definition 2. The order of a differential monomial ρ
[
u

(1)
j

]
, j � 1, in the functions u

(1)
j , their

complex conjugates and their ξ -derivatives are

order
(
∂m
ξ u

(1)
j

) = order
(
∂m
ξ ū

(1)
j

) = m + j, m � 0;

Definition 3. A finite-dimensional vector space Pn, n � 2 is the set of all differential
polynomials of gauge 1 and order n in the functions u

(1)
j , j � 1, their complex conjugates and

their ξ -derivatives;

Definition 4. Pn(m),m � 1 and n � 2 is the subspace of Pn whose elements are differential
polynomials of gauge 1 and order n in the functions u

(1)
j , their complex conjugates and their

ξ -derivatives with 1 � j � m.

From definition (4) one has that Pn = Pn(n − 2) and moreover one can see that in general
Kn[u(1)

1 ] ∈ ∂n
ξ u

(1)
1 ∪ Pn+1(1) and that fn(j) ∈ Pj+n(j − 1), where (j, n) � 2. The basis of

differential monomials of spaces Pn(m) can be found in [20]. We have the following theorem
[9].
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Theorem 3. If for each fixed j � 2 equation (7) with k = 2 and n = 3, namely M2f3(j) =
M3f2(j), is satisfied, then there exist unique differential polynomials fn(j) ∀n � 4 such that
the flows Mnu

(1)
j = fn(j) commute for any n � 2.

Hence among the relations (7) only those with k = 2 and n = 2 have to be tested. The
following theorem ensures that the multiscale expansion (5) is secularity-free.

Theorem 4. The homogeneous equation Mnu = 0 has no solution u in vector space Pm, i.e.,
Ker(Mn) ∩ Pm = ∅.

Finally, we define the degree of integrability of a given equation.

Definition 5. If the relations (7) are satisfied up to index j, j � 2, we say that our equation
is asymptotically integrable of degree j or Aj integrable.

2.1. The integrability conditions for the NLS hierarchy

In this subsection, we will present the conditions for asymptotic integrability of order n or
An integrability conditions for n = 1, 2, 3. To simplify the notation, we will use for u

(1)
j the

concise form u(j). First, for future convenience, we list the fluxes Kn[u] of the NLS hierarchy
up to n = 4:

K1[u]
.= Auξ , (8a)

K2[u]
.= −iρ1

[
uξξ +

ρ2

ρ1
|u|2u

]
, (8b)

K3[u]
.= B

[
uξξξ +

3ρ2

ρ1
|u|2uξ

]
, (8c)

K4[u]
.= −iC

{
uξξξξ +

ρ2

ρ1

[
3ρ2

2ρ1
|u|4u + 4|u|2uξξ + 3u2

ξ ū + 2|uξ |2u + u2ūξξ

]}
, (8d)

and the corresponding K
′
n[u]v up to n = 3:

K ′
1[u]v = Avξ , (9a)

K ′
2[u]v = −iρ1

{
vξξ +

ρ2

ρ1
[u2v̄ + 2|u|2v]

}
, (9b)

K ′
3[u]v = B

{
vξξξ +

3ρ2

ρ1
[|u|2vξ + ūuξ v + uuξ v̄]

}
, (9c)

where A, ρ1, ρ2, B and C are arbitrary real constants.
The A1 integrability condition is given by the reality of coefficient ρ2 of the nonlinear

term in the NLS equation. It is obtained by commuting the NLS flux K2[u], where ρ1 and
ρ2 are supposed complex, with the most general flux that belongs to the same vector space of
K3[u]. This vector space is ∂3

ξ u
(1)
1 ∪ P4(1) and the flux is B[uξξξ + τ |u|2uξ + μu2ūξ ], with

B, τ and μ being complex constants. Let us remark again that, if we start from an integrable
model, the resulting NLS equation should be integrable as well and, as an integrable equation,
it should be part of a hierarchy of equations like (5a). This commutativity condition gives, if
ρ2 	= 0,

Im[ρ2] = Im[B] = Im[ρ1] = 0, τ = 3ρ2/ρ1, μ = 0. (10)

5
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If ρ2 = 0, it follows τ = μ = 0 and no conditions on B and ρ1 (although in general they are
real).

The A2 integrability conditions [9, 10, 18] are obtained choosing j = 2 in the compatibility
conditions (7) with k = 2 and n = 3

M2f3(j) = M3f2(j). (11)

In this case, we have that f2(2) ∈ P4(1) and f3(2) ∈ P5(1) with dim(P4(1)) = 2 and
dim(P5(1)) = 5, so that from the basis of monomials we derive that f2(2) and f3(2) have the
form

f2(2)
.= auξ (1)|u(1)|2 + būξ (1)u(1)2, (12a)

f3(2)
.= α|u(1)|4u(1) + β|uξ (1)|2u(1) + γ uξ (1)2ū(1) + δūξξ (1)u(1)2 + ε|u(1)|2uξξ (1),

(12b)

characterized by 2 and 5 complex constants. If ρ2 	= 0, eliminating from equation (11) the
derivatives of u(1) with respect to slow-times t2 and t3 given by the evolutions (5a) with n = 2
and n = 3, we obtain two A2 integrability conditions

a = ā, b = b̄. (13)

If ρ2 = 0, we have no conditions on a and b. The expressions of α, β, γ, δ, ε in terms of a
and b are

α = 3iBρ2a

4ρ2
1

, β = 3iBb

ρ1
, γ = 3iBa

2ρ1
, δ = 0, ε = γ. (14)

The A3 integrability conditions are derived in a similar way setting j = 3 in equation (11).
In this case, we have that f2(3) ∈ P5(2) and f3(3) ∈ P6(2) with dim(P5(2)) = 12 and
dim(P6(2)) = 26, so that f2(3) and f3(3) will depend, respectively, on 12 and 26 complex
constants

f2(3)
.= τ1|u(1)|4u(1) + τ2|uξ (1)|2u(1) + τ3|u(1)|2uξξ (1) + τ4ūξξ (1)u(1)2 + τ5uξ (1)2ū(1)

+ τ6uξ (2)|u(1)|2 + τ7ūξ (2)u(1)2 + τ8u(2)2ū(1) + τ9|u(2)|2u(1)

+ τ10u(2)uξ (1)ū(1) + τ11u(2)ūξ (1)u(1) + τ12ū(2)uξ (1)u(1), (15a)

f3(3)
.= γ1|u(1)|4uξ (1) + γ2|u(1)|2u(1)2ūξ (1) + γ3|u(1)|2uξξξ (1) + γ4u(1)2ūξξξ (1)

+ γ5|uξ (1)|2uξ (1) + γ6ūξξ (1)uξ (1)u(1) + γ7uξξ (1)ūξ (1)u(1)

+ γ8uξξ (1)uξ (1)ū(1) + γ9|u(1)|4u(2) + γ10|u(1)|2u(1)2ū(2) + γ11ūξ (1)u(2)2

+ γ12uξ (1)|u(2)|2 + γ13|uξ (1)|2u(2) + γ14|u(2)|2u(2) + γ15uξ (1)2ū(2)

+ γ16|u(1)|2uξξ (2) + γ17u(1)2ūξξ (2) + γ18u(2)ūξξ (1)u(1) + γ19u(2)uξξ (1)ū(1)

+ γ20ū(2)uξξ (1)u(1) + γ21u(2)uξ (2)ū(1) + γ22ū(2)uξ (2)u(1)

+ γ23uξ (2)uξ (1)ū(1) + γ24uξ (2)ūξ (1)u(1) + γ25ūξ (2)uξ (1)u(1)

+ γ26ūξ (2)u(2)u(1). (15b)

First, we eliminate from equation (11) with j = 3 the derivatives of u(1) with respect to
slow-times t2 and t3 using the evolutions (5a) respectively with n = 2 and n = 3 and the
same derivatives of u(2) using the evolutions (5b) with n = 2 and n = 3. Then, indicating

6
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with Ri and Ii the real and imaginary parts of τi, i = 1, . . . , 12, we obtain the A3 integrability
conditions when ρ2 	= 0

R1 = − aI6

4ρ1
, R3 = (b − a)I6

2ρ2
− aI12

2ρ2
, R4 = R2

2
+

(a − b)I6

4ρ2
+

aI12

4ρ2
,

R5 = R2

2
+

(a − b)I6

4ρ2
+

(2b − a)I12

4ρ2
, R6 = −aI8

ρ2
, R7 = R12 +

(a − b)I8

ρ2
,

R8 = R9 = 0, R10 = R12, R11 = R12 +
(a − 2b)I8

ρ2
,

I4 = (b + a)R12

4ρ2
+

ρ1I1

ρ2
+

I2 − I3 − 2I5

4
+

[2b(a − b) + a2]I8

4ρ2
2

, I7 = 0,

I9 = 2I8, I10 = I12, I11 = I6 + I12. (16)

Although in [9, 10], it was already reported that these conditions would consist of 15 real
equations so that f2(3) and f3(3) will be parametrized by 2 × 12 − 15 = 9 real constants, the
precise form of those equations was not given and it appeared in [20] for the first time. For
completeness, we give the expressions of γj , j = 1, . . . , 26 as functions of τi, i = 1, . . . , 12:

γ1 = 3B

8ρ2
1

[
−2bR12 − 8ρ1I1 + 2(I2 − 2I3 − 2I5)ρ2 + i(b − 5a)I6 +

2a2I8

ρ2
− 3iaI12

]
,

γ2 = −3Ba

4ρ2
1

[
iI6 +

(a − 2b)I8

ρ2
+ τ12

]
, γ3 = 3iBτ3

2ρ1
, γ4 = 0, γ5 = 3iBτ2

2ρ1
,

γ6 = 3iBτ4

ρ1
, γ7 = γ5, γ8 = γ3 +

3iBτ5

ρ1
, γ9 = −3B(ρ2I6 + 3aiI8)

4ρ2
1

,

γ10 = 3iBρ2R6

2ρ2
1

, γ11 = 0, γ12 = 3iBτ9

2ρ1
,

γ13 = 3iBτ11

2ρ1
, γ14 = 0, γ15 = 3iBτ12

2ρ1
,

γ16 = 3iBτ6

2ρ1
, γ17 = γ18 = 0, γ19 = 3iBτ10

2ρ1
, γ20 = γ15, γ21 = 3iBτ8

ρ1
,

γ22 = γ12, γ23 = γ16 + γ19, γ24 = γ13, γ25 = 3iBτ7

ρ1
, γ26 = 0. (17)

If ρ2 = 0, the A3 integrability conditions turn out to be

τ1 = − i

4ρ1
[b(τ11 − 2τ6) + āτ7], b̄τ7 = 1

2
(b − a)(τ11 + τ10 − τ6) + āτ7,

aτ8 = bτ8 = 0, aτ9 = bτ9 = 0, āτ12 = a(τ10 − τ11) + bτ6 + āτ7,

(b̄ − ā)τ12 = (b − a)τ10, (18)

and the expressions of γj as functions of τi are

γ1 = − 3B

4ρ2
1

(aτ6 − 4iρ1τ1 + b̄τ12), γ2 = − 3B

4ρ2
1

(bτ6 + āτ7). (19)

Other γj are given in equation (17) (note that, given the conditions (18), from the expressions
of γ9 and γ10 one deduces that γ9 = γ10 = 0). Also in this case the conditions given in
equations (18) appear to be new. Their importance resides in the fact that a C-integrable
equation must satisfy those conditions (in this case, equation (8b) is linear and corresponds to
set ρ2 = 0).

7
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3. Multiscale reduction of the lattice potential KdV equation (lpKdV)

Here we present the multiscale reduction of the lpKdV equation (3) up to order ε5, thus
showing that this equation is (at least) A3 integrable. In [11], the lpKdV equation was shown
to be (at least) A1 integrable. Let us briefly review the main results of this reduction.

(i) Order γ = 1.

• α = 0: at this order, equation (3) is automatically satisfied;
• α = 1: one obtains the dispersion relation

e−iω = μ − ζeiκ

μ eiκ − ζ
, (20)

which, solved, gives

ω(κ) = 2 arctan

(
ζ + μ

μ − ζ
tan

κ

2

)
; (21)

(ii) Order γ = 2.

• α = 1:

(ε∂n1 − ∂m1)u
(1)
1 = 0, ε

.= − N1

M1
ω1. (22)

Defining

N1
.= ±S e−iω(μ eiκ − ζ ), M1

.= −S eiκ(μ e−iω + ζ ), S ∈ C, (23)

one obtains ε = ±1, which means that

u
(1)
1

(
n1, {mj }Kj=1

) = u
(1)
1

(
n2, {mj }Kj=2

)
, n2

.= n1 + εm1 (24)

(with ω1 defined in equation (1)). The complex constant S
.= r eiθ , r > 0, is to be chosen

so that θ = −arctan[ζ sin κ/(ζ cos κ − μ)] in such a way that N1 and M1 are indeed real
numbers. Taking into account the dispersion relation (20), N1 and M1 can be rewritten as

N1 = εS(μ − ζ eiκ), M1 = S eiκ ζ 2 − μ2

μ eiκ − ζ
; (25)

• α = 0:

∂n2u
(0)
1 = α1

∣∣u(1)
1

∣∣2; (26)

• α = 2:

u
(2)
2 = α2u

(1)2
1 , α2

.= 1 + eiκ

(1 − eiκ)(μ + ζ )
; (27)

(iii) Order γ = 3.

• α = 1:

(∂n1 − ε∂m1)u
(1)
2 = 0, (28a)

i∂m2u
(1)
1 = ρ1∂

2
n2

u
(1)
1 + ρ2u

(1)
1

∣∣u(1)
1

∣∣2
, −2ρ2

ρ1
= α2

1, (28b)

ρ1
.= μζM2

1 sin κ

M2(μ2 − ζ 2)
= −N2

1

M2
ω2, ρ2

.= 8ζμ(ζ − μ)(1 + cos κ)2 sin κ

M2(μ + ζ )(ζ 2 + μ2 − 2μζ cos κ)2
. (28c)

8
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The first relation says that u
(1)
2 depends on n2 too while the second one is an NLS equation

giving the evolution of u
(1)
1 according to slow-time m2.

Theorem 5. Equation (28b), whose coefficients are defined in (28c), is an integrable
(continuous, defocusing) nonlinear Schrödinger equation, its integrability arising from the
manifest reality of its coefficients. This proves the A1 asymptotic integrability of the lpKdV

equation.

From the above NLS equation (28b), one derives the continuity equation

∂m2d
(1) = ρ1∂n2J

(1)
2 , d(1) .= ∣∣u(1)

1

∣∣2
, J

(1)
2

.= −i
(
ū

(1)
1 ∂n2u

(1)
1 − C.C.

)
, (29)

where we used symbols d(1) and J
(1)
2 to indicate that those quantities represent, respectively,

a density of a conserved quantity and a current density. Differentiating by m2 equation (26),
using continuity equation (29) and integrating with respect to n2 setting equal to zero the
arbitrary n2-independent integration function (all the u(α)

n s go to zero as n2arrow ± ∞), we
get

∂m2u
(0)
1 = α1ρ1J

1
2 . (30)

Equation (30) will be used in the following subsections.

3.1. Higher orders in the multiscale expansion of the lpKdV equation

We now give a detailed exposition of the multiscale analysis at the orders beyond the NLS
scale. To do so, we need to present first the behavior of the higher order harmonics at this
order.

• α = 0: taking into consideration equations (20), (25), (26), (30) and the fact that u
(0)
1 and

u
(1)
1 depend on n2 and choosing u

(0)
2 as a field depending on n2, we obtain

∂n2u
(0)
2 = d(2), d(2) .= α1

(
u

(1)
1 ū

(1)
2 + C.C.

)
+ ρ3J

(1)
2 , ρ3

.= 2 sin(κ)

(μ + ζ )
, (31)

where we introduced symbol d(2) to indicate that this expression represents another density
of a conserved quantity;

• α = 2: taking into consideration equations (20), (25), (27) and the fact that both u
(1)
1 and

u
(2)
2 depend on n2, we have

u
(2)
3 = u

(1)
1

[
α3∂n2u

(1)
1 + 2α2u

(1)
2

]
, α3

.= 2εS eiκ(μ − ζ eiκ)

(eiκ − 1)2(μ + ζ )
= 2iN1α2

(μ + ζ )ρ3
; (32)

• α = 3: using equations (20) and (27), we obtain

u
(3)
3 = α2

2u
(1)3
1 . (33)

With these results at hand we can go over to the higher order.

(iv) Order γ = 4.

• α = 1: taking into account equations (20), (25)–(27), (28b), (30)–(32), that
u

(0)
1 , u

(0)
2 , u

(1)
1 , u

(1)
2 and u

(2)
2 depend on n2 and that (see sections 2 and 2.1) amplitude

u
(1)
1 evolves at slow-time m3 according to the complex modified KdV equation (cmKdV )

∂m3u
(1)
1 − B

(
∂3
n2

u
(1)
1 +

3ρ2

ρ1

∣∣u(1)
1

∣∣2
∂n2u

(1)
1

)
= 0, (34)

we get

(∂n1 − ε∂m1)u
(1)
3 = N2

(
u

(1)
1 , u

(1)
2

)
. (35)

9
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Here, N2
(
u

(1)
1 , u

(1)
2

)
is a nonlinear function in u

(1)
1 and its complex conjugate, and a linear

function in u
(1)
2 and its complex conjugate. As seen before in equations (24), (28a), the rhs

of equation (35) depends on n2 so that it is in the kernel of the linear operator on the lhs and
consequently it is a secular term. In order to remove this secularity, we have to demand that
both the rhs and the lhs be equal to zero. We obtain

(∂n1 − ε∂m1)u
(1)
3 = 0, (36a)

∂m2u
(1)
2 − K ′

2

[
u

(1)
1

]
u

(1)
2 = N 1

2

(
u

(1)
1

)
, (36b)

K ′
2

[
u

(1)
1

]
u

(1)
2

.= −iρ1

[
∂2
n2

u
(1)
2 +

ρ2

ρ1

(
u

(1)2
1 ū

(1)
2 + 2

∣∣u(1)
1

∣∣2
u

(1)
2

)]
.

The first relation shows that u
(1)
3 itself depends on n2. In the second relation, which comes

directly from N2
(
u

(1)
1 , u

(1)
2

) = 0,N 1
2

(
u

(1)
1

)
is another nonlinear function involving only u

(1)
1

and its complex conjugate and K ′
2

[
u

(1)
1

]
u

(1)
2 is the Frechet derivative of the NLS flux K2

[
u

(1)
1

]
(see section 2.1). Term N 1

2

(
u

(1)
1

)
depends on the free real constant B appearing in equation

(34). Choosing coefficient B so as to eliminate any dependence in the resulting equation on
∂3
n2

u
(1)
1 , we obtain

∂m2u
(1)
2 − K ′

2

[
u

(1)
1

]
u

(1)
2 = bu

(1)2
1 ∂n2 ū

(1)
1 + a

∣∣u(1)
1

∣∣2
∂n2u

(1)
1 , (37a)

a
.= −N1ρ2 cot κ, b

.= a
2 − cos κ

cos κ
, b = a − 2ρ1ρ3α1 (37b)

B = εμζM3
1

3M3(ζ 2 − μ2)2
[(μ2 + ζ 2 + 2μζ cos κ) cos κ − 4μζ ] (37c)

= N3
1

M3
ω3.

A particular solution of the nonhomogeneous equation (37a) is given by

Spart. = −i
a

2ρ1
u

(1)
1

∫ n2

ξ0

w
∣∣u(1)

1 (n′
2)

∣∣2
dn′

2 + i
b − a

2ρ2
∂n2u

(1)
1 , (38)

where ξ0 is a real constant. The elimination of any term of form ∂3
n2

u
(1)
1 from the rhs of

equation (37a) is justified from the following theorem:

Theorem 6. If a function q(x, tr , ts) evolves according to equation ∂tr q − Kr [q] = 0 and if
Ks[q] is such that [Kr,Ks]L = 0 (cfr. equation (6)), then term ∂ts q − Ks[q] is secular for
equation

(
∂tr − K ′

r [q]
)
φ(x, tr ) = fr(x, tr , q, qx, . . .), where fr(x, tr , q, qx, . . .) is a generic

forcing term and φ(x, tr ) is a generic function of its arguments.

Proof. It is sufficient to show that ∂ts q − Ks[q] solves the homogeneous equation. In
fact we have

(
∂tr − K ′

r [q]
)(

∂ts q − Ks[q]
) = ∂tr

(
∂ts q − Ks[q]

) − K ′
r [q]

(
∂ts q − Ks[q]

) =
∂ts ∂tr q − ∂̂tr Ks[q] − K ′

s[q]∂tr q − K ′
r [q]∂ts q + K ′

r [q]Ks = ∂ts ∂tr q − ∂̂tr Ks[q] − K ′
s[q]Kr −

∂ts Kr [q] + ∂̂ts Kr [q] + K ′
r [q]Ks = ∂ts

(
∂tr q − Kr [q]

) − [Kr,Ks]L = 0. �

Notation ∂̂tj indicates differentiation with respect to a possible explicit dependence of
various Km[q] on the slow-times. From the proof it is clear that, when various Km[q] do not
exhibit an explicit dependence on the slow-times, the two terms ∂ts q and Ks(q) are indeed
separately secular. If the rhs of equation (37a) contains a term of form ∂3

n2
u

(1)
1 , it is always

10
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possible to evidence in it a term of form K3
[
u

(1)
1

]
, the flux of the cmKdV equation (34),

which, from the above theorem is secular.

Theorem 7. The coefficients of the rhs of equation (37a) given by equation (37b), obviously
satisfy the A2 integrability conditions (13). This proves the A2 asymptotic integrability of the
lpKdV equation.

Let us now present the results we get at order γ = 4 for the other harmonics. From equations
(29), (34) and (28b), (31), (37a) we get respectively the continuity equations

∂m3d
(1) = B∂n2J

(1)
3 , (39a)

∂m2d
(2) = ∂n2J

(2)
2 . (39b)

As before with J
(1)
3 and J

(2)
2 we have indicated the current densities related respectively to

densities d(1) and d(2)

J
(1)
3

.=
(

3ρ2

2ρ1

∣∣u(1)
1

∣∣4
+ u

(1)
1 ∂2

n2
ū

(1)
1 − ∣∣∂n2u

(1)
1

∣∣2
+ ū

(1)
1 ∂2

n2
u

(1)
1

)
, (39c)

J
(2)
2

.= −ρ1ρ3
(
ū

(1)
1 ∂2

n2
u

(1)
1 − 2

∣∣∂n2u
(1)
1

∣∣2
+ u

(1)
1 ∂2

n2
ū

(1)
1

)
+

[
(a + b)

α1

2
− ρ2ρ3

]∣∣u(1)
1

∣∣4

+ iρ1α1
(
u

(1)
1 ∂n2 ū

(1)
2 + u

(1)
2 ∂n2 ū

(1)
1 − C.C.

)
. (39d)

Combining equations (39a) and (39b) with equations (26) and (31) respectively, give the
relations (as usual the arbitrary n2-independent integration functions have been set to zero to
match the asymptotic conditions on u(α)

n )

∂m3u
(0)
1 = α1BJ

(1)
3 , ∂m2u

(0)
2 = J

(2)
2 , (40)

necessary for the following computations:

• α = 0: taking into account equations (20), (25), (26), (27), (28b), (30), (31), (40), that
u

(0)
1 , u

(0)
2 , u

(1)
1 , u

(1)
2 depend on n2 and choosing u

(0)
3 dependent on n2, we have

∂n2u
(0)
3 = d(3), (41)

d(3) .= −iρ3
(
ū

(1)
2 ∂n2u

(1)
1 + ū

(1)
1 ∂n2u

(1)
2 − C.C.

)
+ α1

(
u

(1)
1 ū

(1)
3 + ū

(1)
1 u

(1)
3 + |u(1)

2 |2)
+

3M1

2 (α − β)
α2

1

∣∣u(1)
1

∣∣4
+

M2
1

12
α1

(
ū

(1)
1 ∂2

n2
u

(1)
1 + u

(1)
1 ∂2

n2
ū

(1)
1

+
4 sin2(κ/2) − 1

cos2(κ/2)

∣∣∂n2u
(1)
1

∣∣2
)

;

• α = 2: taking into account equations (20), (25), (26), (27), (28b), (32), (33) and that
u

(0)
1 , u

(1)
1 , u

(1)
2 , u

(2)
2 and u

(2)
3 depend on n2, we have

u
(2)
4 = 2α3

2(1 + 4 sin2(κ/2))
∣∣u(1)

1

∣∣2
u

(1)2
1 +

α2
3

2α2

[(
∂n2u

(1)
1

)2
+ u

(1)
1 ∂2

n2
u

(1)
1 cos κ

]
+ α2

(
2u

(1)
1 u

(1)
3 + u

(1)2
2

)
+ α3∂n2

(
u

(1)
2 u

(1)
1

); (42)

• α = 3: taking into account equations (20), (25), (27), (32), (33) and that u
(1)
1 , u

(2)
2 and

u
(3)
3 depend on n2, we have

u
(3)
4 = α2

[
3α2u

(1)
2 + 2α3

(
∂n2u

(1)
1

)]
u

(1)2
1 ; (43)

11
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• α = 4: taking into account equations (20), (27), (33) we obtain

u
(4)
4 = α3

2u
(1)4
1 . (44)

With these results we can go over to a higher order.

(v) Order γ = 5.

• α = 1: taking into account equations (20), (25)–(27), (28b), (30)–(34), (37a)–(37c),
(39c), (39d), (40)–(42), the fact that u

(0)
1 , u

(0)
2 , u

(0)
3 , u

(1)
1 , u

(1)
2 , u

(1)
3 , u

(2)
2 , u

(2)
3 depend on n2

and that (see sections 2 and 2.1)

∂m3u
(1)
2 − K ′

3

[
u

(1)
1

]
u

(1)
2 = f3(2), (45)

∂m4u
(1)
1 + iC

{
∂4
n2

u
(1)
1 +

ρ2

ρ1

[
3ρ2

2ρ1

∣∣u(1)
1

∣∣4
u

(1)
1 + 4

∣∣u(1)
1

∣∣2
∂2
n2

u
(1)
1

+ 3ū
(1)
1

(
∂n2u

(1)
1

)2
+ 2

∣∣∂n2u
(1)
1

∣∣2
u

(1)
1 + u

(1)2
1 ∂2

n2
ū

(1)
1

]}
= 0, (46)

where K ′
3[u]v is given by equation (9c) and f3(2) by equation (12b) and (14), we obtain

(∂n1 − ε∂m1)u
(1)
4 = N3

(
u

(1)
1 , u

(1)
2 , u

(1)
3

)
. (47)

Here, N3
(
u

(1)
1 , u

(1)
2 , u

(1)
3

)
is a linear function in u

(1)
3 and its complex conjugate, and a nonlinear

function in u
(1)
1 and u

(1)
2 and their complex conjugates. As seen before in equations (24), (28a),

(36a), the rhs of equation (47) depends on n2 so that it is in the kernel of the linear operator
on the lhs and consequently it is a secular term. In order to remove this secularity, we have to
demand that both the rhs and the lhs be equal to zero. We obtain(

∂n1 − ε∂m1

)
u

(1)
4 = 0, (48a)

∂m2u
(1)
3 − K ′

2

[
u

(1)
1

]
u

(1)
3 = N 1

3

(
u

(1)
1 , u

(1)
2

)
. (48b)

The first relation shows that u
(1)
4 itself depends on n2. In the second relation, which comes

directly from N3
(
u

(1)
1 , u

(1)
2 , u

(1)
3

) = 0,N 1
3

(
u

(1)
1 , u

(1)
2

)
is another nonlinear function involving

u
(1)
1 , u

(1)
2 and their complex conjugates. Now the term N 1

3

(
u

(1)
1 , u

(1)
2

)
contains the free real

constant C which is chosen so as to eliminate any dependence of the resulting equation on
∂4
n2

u
(1)
1 . From theorem 6, the presence of this term can always introduce a dependence on the

secular term K4
[
u

(1)
1

]
, the flux of equation (45). So we obtain

∂m2u
(1)
3 − K ′

2

[
u

(1)
1

]
u

(1)
3 = f2(3), (49a)

C = μζM4
1 [μ4 − 20μ2ζ 2 + ζ 4 + 8μζ(μ2 + ζ 2) cos κ + 2μ2ζ 2 cos(2κ)]

12M4(μ2 − ζ 2)3
sin κ

= N4
1

M4
ω4, (49b)

where the forcing term f2(3) is given by equation (15a).

Theorem 8. Term f2(3) appearing in equation (49a) obviously has all its coefficients
that satisfy all the fifteen A3 integrability conditions (16). This proves the A3 asymptotic
integrability of the lpKdV equation.

12



J. Phys. A: Math. Theor. 42 (2009) 454018 C Scimiterna

Due to the fact that the 12 complex coefficients of f2(3) respect the A3 integrability conditions,
they can all be expressed in terms of a convenient nine-dimensional real basis. The base is
defined by R1, I1, R2, I2, I3, I5, R6 and R12, I12 (see equation (15a)) and given by

R1 = 0, I1 = −ρ2
(−23 + 16 cos κ + cos(2κ)) cot2(κ/2)

2(μ + ζ )2
, R2 = 0

I2 = −N2
1 ρ2

(29 − 24 cos κ + 7 cos(2κ))

12 sin2 κ
, I3 = −1

6
N2

1 (1 + 3 csc2 κ)ρ2, (50)

I5 = −1

4
N2

1 (1 + 2 csc2 κ)ρ2, R6 = R12 = a, I12 = 0.

4. Multiscale analysis of the symmetric discretization of the KdV equation

Let us briefly review the main results of the multiscale analysis of the symmetric discretization
of the KdV equation obtained in [12] until the NLS order.

(i) Order γ = 1.
• α = 0: at this order, equation (4) is automatically satisfied;
• α = 1: we get the dispersion relation

sin ω = α sin3 κ, (51)

which is used to express α in terms of κ and ω;
(ii) Order γ = 2.

• α = 0:

∂m1u
(0)
1 = 0, (52)

and we choose u
(0)
1 = 0;

• α = 1:

(ε∂n1 − ∂m1)u
(1)
1 = 0, ε

.= − N1

M1
ω1. (53)

Choosing

N1 = ±S sin κ cos ω, M1 = −3S cos κ sin ω, (54)

where S is an arbitrary real constant, one obtains ε = ±1 so that u
(1)
1 is a function of

n2
.= n1 + εm1;
• α = 2:

u
(2)
2 = α2u

(1)2
1 , α2

.= − β sin(2κ) csc ω

4(4 cos3 κ − cos ω)
; (55)

(iii) Order γ = 3.
• α = 0:

u
(0)
2 = α1

∣∣u(1)
1

∣∣2
, α1

.= 1

3
β cot ω tan κ = − N1

M1
βε; (56)

• α = 1:

(∂n1 − ε∂m1)u
(1)
2 = 0, (57a)

i∂m2u
(1)
1 = ρ1∂

2
n2

u
(1)
1 + ρ2u

(1)
1

∣∣u(1)
1

∣∣2
, (57b)

13
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ρ1
.= − 3S2

4M2
[2 + 3 cos(2κ) − cos(2ω)] tan ω = −N2

1

M2
ω2,

ρ2
.= −β2[5 + 3 cos(2κ) − 16 cos3 κ cos ω + 2 cos(2ω)] sin κ tan κ csc(2ω)

6M2(4 cos3 k − cos ω)

= (α1 + α2)β sin κ sec ω

M2
. (57c)

Equation (57a) shows that u
(1)
2 depends on n2 while equation (57b) is an NLS equation giving

the evolution of u
(1)
1 in slow-time m2.

Theorem 9. As ρ2 is a real number, the A1 integrability condition, equation (10), is satisfied
and the obtained NLS equation is integrable. Hence our starting model (4) is A1-integrable.

4.1. Higher orders in the multiscale expansion of the symmetric discretization of the KdV

equation

We now present the multiscale analysis at orders beyond the NLS scale. As everything
resembles the case of the lpKdV equation, we will state only the results thereby showing the
nonintegrability of this equation.

(iii) Order γ = 3.

• α = 2:

u
(2)
3 = α3u

(1)
1 ∂n2u

(1)
1 + 2α2u

(1)
1 u

(1)
2 ,

α3
.= − iSεβ sin κ{[1 + 16 cos3 κ cos ω − 2 cos(2ω)] cos(2κ) − 3 cos(2ω)}

4(4 cos3 κ − cos ω)2 sin ω
;

(58)

• α = 3:

u
(3)
3 = α2α4u

(1)3
1 , α4

.= − β sin(3κ)

{[1 + 2 cos(2κ)]3 + 4 sin2 ω − 3} sin ω
; (59)

(iv) Order γ = 4.

• α = 0:

u
(0)
3 = α1

(
u

(1)
1 ū

(1)
2 + C.C.

)
+ ρ3J

(1)
2 ,

J
(1)
2

.= −i
(
ū

(1)
1 ∂n2u

(1)
1 − C.C.

)
,

ρ3
.= −Sεβ[2 + 3 cos(2κ) − cos(2ω)] csc ω sec κ tan κ

12
= −εM2α1ρ1

M1
;

(60)

• α = 1:

∂m2u
(1)
2 − K ′

2

[
u

(1)
1

]
u

(1)
2 = bu

(1)2
1 ∂n2 ū

(1)
1 + a

∣∣u(1)
1

∣∣2
∂n2u

(1)
1 , (61a)

a
.= −3BM3ρ2

M2ρ1
+ 6N1ρ2 cot κ tan2 ω +

β sec ω[2N1(α1 + α2) cos κ + (iα3 + ρ3) sin κ]

M2
,

(61b)

14
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b
.= β sec ω[−N1(α1 + α2) cos κ + ρ3 sin κ] − 3N1M2ρ2 cot κ tan2 ω

M2
,

B
.= εS3{21 + 18 cos(2κ)[2 − cos(2ω)] − 32 cos(2ω) + cos(4ω)}

8M3

· cos κ sec ω tan ω = N3
1

M3
ω3. (61c)

Theorem 10. The coefficients of the rhs of equation (61a), given by equation (61b), respect
the two A2 integrability conditions (13). This proves the A2 asymptotic integrability of the
symmetrically discretized KdV equation.

• α = 2:

u
(2)
4 = 2α2

2(α1 + α4 + α5ρ2)
∣∣u(1)

1

∣∣2
u

(1)2
1 +

[
α3δ + α2

(
π + N2

1

)](
∂n2u

(1)
1

)2

+
[
α3δ + α2

(
π + N2

1 + 2ρ1α2α5
)]

u
(1)
1 ∂2

n2
u

(1)
1 + α2

(
2u

(1)
1 u

(1)
3 + u

(1)2
2

)
+ α3∂n2

(
u

(1)
2 u

(1)
1

)
, α5

.= −2M2 cos(2ω) csc(2κ)

β
, (62)

δ
.= 3iεS cos κ[4 cos κ cos ω cos(2κ) − cos(2ω)]

2(4 cos3 κ − cos ω)
,

π
.= 3S2 cos κ cos ω[cos ω + 3 cos ω cos(4κ) + 6 cos κ sin2 ω]

2(4 cos3 κ − cos ω)
;

• α = 3:

u
(3)
4 = α4

[
3α2u

(1)
2 + (α2F + α3)

(
∂n2u

(1)
1

)]
u

(1)2
1 ,

F
.= 24iεS cos3 κ cos ω[4 cos3(2κ) − cos(2ω)]

[1 + 2 cos(2κ)][3 + 6 cos(2κ) + 3 cos(4κ) + cos(6κ) − cos(2ω)]
;

(63)

• α = 4:

u
(4)
4 = Gα2(α2 + 2α4)u

(1)4
1 ,

G
.= β csc ω sin(4κ)

4{−4[cos κ + cos(3κ)]3 + cos ω + cos(3ω)} ;
(64)

(v) Order γ = 5.

• α = 0:

u
(0)
4 = −iρ3

(
ū

(1)
2 ∂n2u

(1)
1 + ū

(1)
1 ∂n2u

(1)
2 − C.C.

)
+ α1

(
ū

(1)
1 u

(1)
3 + u

(1)
1 ū

(1)
3 +

∣∣u(1)
2

∣∣2)
+f

∣∣u(1)
1

∣∣4
+ g

∣∣δn2u
(1)
1

∣∣2
+ h

(
u

(1)
1 ∂2

n2
ū

(1)
1 + C.C.

)
,

f
.= − ε

M1

{[
(a + b)

α1

2
− ρ2ρ3

]
M2 +

N1β
(
α2

1 + 2α2
2

)
2

+
3BM3α1ρ2

2ρ1

}
,

g
.= −−3BM3α1 + N3

1 (β − 6αα1) + M3
1 α1ε + 6M2ρ1ρ3

3M1ε
,

h
.= −6BM3α1 + N3

1 (β − 6αα1) + M3
1 α1ε − 6M2ρ1ρ3

6M1ε
;

(65)
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• α = 1:

∂m2u
(1)
3 − K ′

2

[
u

(1)
1

]
u

(1)
3 = f2(3), (66a)

C
.= S4{−3[404 + 549 cos(2κ) + 126 cos(4κ)] cos(2ω).

128M4

+
.3[73 + 78 cos(2κ) + 9 cos(4κ)] cos(4ω) − [2 + cos(2κ)] cos(6ω).

128M4

+
.997 + 1358 cos(2κ) + 405 cos(4κ)} sec2 ω tan ω

128M4
= N4

1

M4
ω4, (66b)

where the forcing term f2(3) is given by equation (15a). The real and imaginary parts of
the coefficients τi, i = 1 . . . , 12 of f2(3) are given by

R1 = 0,

I1 = −2βρ1 sin κ
[
12N1α

2
2α5ρ1 sec ω + (3BM3α1 − 2M2ρ1ρ3) csc ω tan κ

]
12N1M2ρ

2
1

ρ2

− 3aBM3

4M2ρ
2
1

ρ2 +

(
3CM4

2M2ρ
2
1

− 1

2
M2 tan ω

)
ρ2

2 − βα2
2(2α1 + 3α4) sin κ sec ω

M2

− β
[
(a + b)M2α1 + N1

(
α2

1 + 2α2
2

)
β
]

csc ω tan κ sin κ

6N1M2
,

R2 = 0,

I2 = 2
[
CM4 + 9N2

1 M2ρ1(1 − csc2 κ + cot2 κ sec2 ω) − M2
2 ρ2

1 tan ω
]

M2ρ1
ρ2

− 9BM3N1 cot κ tan2 ω

M2ρ1
ρ2 − 3

[
bBM3

M2ρ1
+ (a + 2b)N1 cot κ tan2 ω

]

− N2
1 csc ω sin κ tan κ

9M2
β2 −

(
N1 cos κ sec ω

M2
+

2ρ1 csc ω sin κ tan κ

3N1

)
βρ3

+
N1 sec ω(iα3 cos κ − 2N1α2 sin κ)

M2
β +

BM3 csc ω sin κ tan κ

3N1M2
βα1

+
2 csc κ sec κ + 3 sec ω(3 cos κ cot κ tan2 ω − 2 sin κ)

3M2
N2

1 βα1,

R3 = 0,

I3 = −N2
1 csc ω sin κ tan κ

18M2
β2 − BM3 csc ω sin κ tan κ

3N1M2
βα1

+
2 csc κ sec κ + 3 sec ω(3 cos κ cot κ tan2 ω − 2 sin κ)

6M2
N2

1 βα1

+
β sec ω

{
N1(iα3 + ρ3) cos κ − [

α3δ + α2
(
2N2

1 + π + 2α2α5ρ1
)]

sin κ
}

M2

+
βρ1ρ3 csc ω sin κ tan κ

3N1
− 3a

[
BM3

2M2ρ1
+ N1 cot κ tan2 ω

]

+
4CM4 − 2M2

2 ρ2
1 tan ω + 9N1(N1M2ρ1 cot κ − BM3) cot κ tan2 ω

M2ρ1
ρ2,

R4 = 0,
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I4 = −N2
1 csc ω sin κ tan κ

18M2
β2 +

3

2
N1(2b + 3N1ρ2 cot κ) cot κ tan2 ω

+
CM4ρ2

M2ρ1
− BM3 csc ω sin κ tan κ

3N1M2
βα1 +

βρ1ρ3 csc ω sin κ tan κ

3N1

+
2 csc κ sec κ + 3 sec ω(3 cos κ cot κ tan2 ω − sin κ)

6M2
N2

1 βα1

− N1(2ρ3 cos κ + N1α2 sin κ) sec ω

2M2
β,

R5 = 0,

I5 = (iN1 cos κ − δ sin κ) sec ω

M2
α3 −

[
N2

1 (α1 + 2α2) + α2π
]

sin κ sec ω

M2
β

+
N1ρ3 cos κ sec ω

M2
β − M2ρ2ρ1 tan ω + 3N1(3N1ρ2 cot κ − a) cot κ tan2 ω

+
3(2CM4ρ2 − 6BM3N1ρ2 cot κ tan2 ω − aBM3)

2M2ρ1
,

τ6 = τ7 = a, τ8 = −iρ2, τ9 = −2iρ2,

τ10 = a, τ11 = 2b, τ12 = a. (67)

Theorem 11. The coefficients given in equation (67) respect only fourteen out of the fifteen
A3 integrability conditions (16) (the one involving I4 is not satisfied). This proves that, as
expected, the symmetrically discretized KdV equation is not integrable.

5. Conclusions

We have shown in all details that the symmetric version of the discretized KdV equation is
A2 integrable but not A3 integrable. This is a very important result as it shows that also in
the case of difference equations the A3 integrability conditions are very restrictive. So also in
the case of discrete equations at this order, the integrability conditions are able to distinguish
an integrable from a nonintegrable equation. These results confirm the conjected theorem
presented in [12] that by multiscale expansion we can effectively prove integrability. Work is
in progress to present some results on a possible classification theorem for nonlinear equations
on the square.
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